Mechanism of increased respiration in an H+-ATPase-defective mutant of Corynebacterium glutamicum.
نویسندگان
چکیده
We previously reported that a spontaneous H(+)-ATPase-defective mutant of Corynebacterium glutamicum, F172-8, derived from C. glutamicum ATCC 14067, showed enhanced glucose consumption and respiration rates. To investigate the genome-based mechanism of enhanced respiration rate in such C. glutamicum mutants, A-1, an H(+)-ATPase-defective mutant derived from C. glutamicum ATCC 13032, which harbors the same point mutation as F172-8, was used in this study. A-1 showed similar fermentation profiles to F172-8 when cultured in a jar fermentor. Enzyme activity measurements, quantitative real-time PCR, and DNA microarray analysis suggested that A-1 enhanced malate:quinone oxidoreductase/malate dehydrogenase and l-lactate dehydrogenase/NAD(+)-dependent-lactate dehydrogenase coupling reactions, but not NADH dehydrogenase-II, for reoxidation of the excess NADH arising from enhanced glucose consumption. A-1 also up-regulated succinate dehydrogenase, which may result in the relief of excess proton-motive force (pmf) in the H(+)-ATPase mutant. In addition, the transcriptional level of cytochrome bd oxidase, but not cytochrome bc(1)-aa(3), also increased, which may help prevent the excess pmf generation caused by enhanced respiration. These results indicate that C. glutamicum possesses intriguing strategies for coping with NADH over-accumulation. Furthermore, these mechanisms are different from those in Escherichia coli, even though the two species use similar strategies to prevent excess pmf generation.
منابع مشابه
Development of A Novel Gene Expression System for Secretory Production of Heterologous Proteins via the General Secretory (Sec) Pathway in Corynebacterium glutamicum
Background: Corynebacterium glutamicum (C. glutamicum) is a potential host for the secretory production of the heterologous proteins. However, to this date few secretion-type gene expression systems in C. glutamicum have been developed, which limit applications of C. glutamicum in a secretory production of the heterologous proteins.Objectives: In this stu...
متن کاملRelaxed rrn expression and amino acid requirement of a Corynebacterium glutamicum rel mutant defective in (p)ppGpp metabolism.
The stringent response in Corynebacterium glutamicum was investigated. Sets of rrn-cat fusions were constructed in their native chromosomal position to examine the effects of amino acid starvation in a rel(+) strain and a Deltarel mutant defective in (p)ppGpp metabolism. The expression of the six rrn operons in the rel(+) control was stringently regulated and reduced to 79% upon induction of am...
متن کاملUnbalance of L-lysine flux in Corynebacterium glutamicum and its use for the isolation of excretion-defective mutants.
We found that the simple addition of L-methionine to the wild type of Corynebacterium glutamicum results in excretion of the cellular building block L-lysine up to rates of 2.5 nmol/min/mg (dry weight). Biochemical analyses revealed that L-methionine represses the homoserine dehydrogenase activity and reduces the intracellular L-threonine level from 7 to less than 2 mM. Since L-lysine synthesis...
متن کاملGenome-wide identification of in vivo binding sites of GlxR, a cyclic AMP receptor protein-type regulator in Corynebacterium glutamicum.
Corynebacterium glutamicum GlxR is a cyclic AMP (cAMP) receptor protein-type regulator. Although over 200 GlxR-binding sites in the C. glutamicum genome are predicted in silico, studies on the physiological function of GlxR have been hindered by the severe growth defects of a glxR mutant. This study identified the GlxR regulon by chromatin immunoprecipitation in conjunction with microarray (ChI...
متن کاملNew insights into the biogenesis of the cell envelope of corynebacteria: identification and functional characterization of five new mycoloyltransferase genes in Corynebacterium glutamicum.
Mycolic acids, the major lipid constituents of Corynebacterineae, play an essential role in maintaining the integrity of the bacterial cell envelope. We have previously characterized a corynebacterial mycoloyltransferase (PS1) homologous in its N-terminal part to the three known mycobacterial mycoloyltransferases, the so-called fibronectin-binding proteins A, B and C. The genomes of Corynebacte...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of bioscience and bioengineering
دوره 113 4 شماره
صفحات -
تاریخ انتشار 2012